Cholecystokinin increases GABA release by inhibiting a resting K+ conductance in hippocampal interneurons.

نویسندگان

  • K K Miller
  • A Hoffer
  • K R Svoboda
  • C R Lupica
چکیده

Cholecystokinin (CCK) is found co-localized with the inhibitory neurotransmitter GABA in interneurons of the hippocampus. Also, CCK receptors are found in abundance in this brain region. The possibility that CCK alters interneuron activity was examined using whole-cell current- and voltage-clamp recordings from visualized interneurons in the stratum radiatum of area CA1 in rat hippocampal slices. The effect of CCK on GABA-mediated IPSCs was also determined in pyramidal neurons. The sulfated octapeptide CCK-8S increased action potential frequency or generated inward currents in the majority of interneurons. These effects of CCK persisted in the presence of tetrodotoxin and cadmium, suggesting that they were direct. Current-voltage plots revealed that CCK-8S inhibited a conductance that was linear across command potentials and reversed near the equilibrium potential for K+ ions. The K+ channel blocker tetraethylammonium (10 mM) generated inward currents similar to those initiated by CCK, and it occluded the effect of the peptide. BaCl2 (1 mM) and 4-aminopyridine (2 mM) did not alter the effect of CCK. The CCKB receptor antagonist PD-135,158 completely blocked the inward currents generated by CCK-8S. CCK also resulted in an increase in spontaneous action potential-dependent IPSC frequency, but no changes in action potential-independent miniature IPSCs or evoked IPSCs in pyramidal neurons. These results provide evidence that CCK can depolarize hippocampal interneurons through the inhibition of a resting K+ conductance, leading to increased tonic inhibition of pyramidal neurons. This action of CCK may contribute to its anticonvulsant properties, as observed in limbic seizure models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Presynaptic kainate receptor activation preserves asynchronous GABA release despite the reduction in synchronous release from hippocampal cholecystokinin interneurons.

Inhibitory synaptic transmission in the hippocampus in mediated by a wide variety of different interneuron classes which are assumed to play different roles in network activity. Activation of presynaptic kainate receptors (KARs) has been shown to reduce inhibitory transmission but the interneuron class(es) at which they act is only recently beginning to emerge. Using paired recordings we show t...

متن کامل

Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons.

To understand the functional significance and mechanisms of action in the CNS of endogenous and exogenous cannabinoids, it is crucial to identify the neural elements that serve as the structural substrate of these actions. We used a recently developed antibody against the CB1 cannabinoid receptor to study this question in hippocampal networks. Interneurons with features typical of basket cells ...

متن کامل

Requirement for CB1 but not GABAB receptors in the cholecystokinin mediated inhibition of GABA release from cholecystokinin expressing basket cells.

Cholecystokinin (CCK) is an abundant neuropeptide involved in normal behaviour and pathophysiological conditions. Recently, CCK was shown to act as a molecular switch for perisomatic inhibition in the hippocampus, by directly depolarizing parvalbumin expressing (PV+) basket cells while indirectly depressing GABA release from CCK expressing (CCK+) basket cells. However, whether these two CCK-med...

متن کامل

Membrane and synaptic actions of halothane on rat hippocampal pyramidal neurons and inhibitory interneurons.

A relatively small number of inhibitory interneurons can control the excitability and synchronization of large numbers of pyramidal neurons in hippocampus and other cortical regions. Thus, anesthetic modulation of interneurons could play an important role during anesthesia. The aim of this study was to investigate effects of a general anesthetic, halothane, on membrane and synaptic properties o...

متن کامل

RAPID COMMUNICATION Endogenous GABA Activates Small-Conductance K Channels Underlying Slow IPSCs in Rat Hippocampal Neurons

De Koninck, Yves and Istvan Mody. Endogenous GABA actition of these receptors to raise the intracellular concentration vates small-conductance K channels underlying slow IPSCs in of G proteins to the level required for activation of the K rat hippocampal neurons. J. Neurophysiol. 77: 2202–2208, 1997. channels (Destexhe and Sejnowski 1995), or 3) cause the The objective of this study was to dete...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 17 13  شماره 

صفحات  -

تاریخ انتشار 1997